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We analyze a general time-discrete mathematical model of single species population dynamics with the
intraspecific density effect and the harvesting/thinning effect. We harvest a portion of the population at a
moment in each year. We investigate the condition under which the harvesting/thinning causes an even-
tual increase of its population at the equilibrium, and show that such a paradoxical increase could occur
for the discrete single species population dynamics with a large family of density effect functions. Some
typical models are analyzed in detail according to the possibility of the paradox emergence. Our result
implies that the contest competition would never cause the paradox, while the scramble competition
would be likely to cause it.
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1. Introduction

In this paper, we analyze a general time-discrete mathematical
model of single species population dynamics with the intraspecific
density effect and the harvesting/thinning effect. The harvesting/
thinning is in general aimed to minimize the possibility of a popu-
lation extinction, to maintain a population stock at productive lev-
els, or to depress a pest density below some critical ‘damage
threshold’ [1]. Related to these problems, a variety of mathematical
models introduced the harvesting/thinning effect have been con-
sidered and analyzed, mainly from the viewpoint of a sustainable
management/development of natural resources (for example, see
[2,3]).

In agriculture, one of the serious problems has been the pest
outbreak. So the pest management has been studied empirically
and theoretically (for reviews, see [4-12]). In many cases, pesti-
cides have been used against the pest. However, in some cases,
the pesticide is effective only in the early period of its introduction
and subsequently results in an unexpected increase or an outbreak
of the pest in the later period. Such a paradoxical phenomenon in
the pest control is often called the pest resurgence. Many investiga-
tions about the resurgence have been carried out (for instance, see
[13-17]). It could be caused by the emergence of a pesticide-resis-
tant strain of the pest or by the decrease of its enemy population
affected by the pesticide [18]. Some other researches showed that
a small amount of pesticide could increase the pest fecundity
whereas a large amount of pesticide decreases the pest population
[18,19]. Such phenomenon is called the hormesis or the homoligosis
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[18,20]. The hormesis would play an important role to cause the
resurgence [18].

In previous researches, the harvesting/thinning by various
forms of physical control, spraying of pesticides, and biological
control was always regarded to necessarily reduce the population
size. In this paper, it is implied that the subsequent population
sizes would not be always reduced by the harvesting/thinning,
and such hypothesis that the harvesting/thinning would always
work to reduce the population size as the eventual consequence
of its application may be inappropriate in some cases.

In our time-discrete mathematical model of single species pop-
ulation dynamics with the intraspecific density effect and the har-
vesting/thinning effect, we harvest a portion of the population at a
moment in each year. We investigate the condition under which
the harvesting/thinning causes an eventual increase of its popula-
tion at the equilibrium, and show that such a paradoxical increase
can occur for the discrete single species population dynamics with
a large family of density effect functions. Some typical models are
analyzed in detail according to the possibility of the paradox
emergence.

Although our model is fundamental and very simple, we can see
that the harvesting/thinning would potentially work to increase
the equilibrium size of a population targeted by it. This appears
to be a paradox against the intuition from the direct effect of har-
vesting/thinning to reduce the population size. In the previous
researches, such resurgent phenomena against some harvesting/
thinning operation in nature or in agriculture/fishery/forestry have
been used to be explained by some specific secondary effect of the
harvesting/thinning, as mentioned above. In contrast, our result
implies that, even without any of such specific causes, the
resurgent phenomenon may emerge only by the native ecological
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structure in the population dynamics disturbed by the harvesting/
thinning operation.

Maximal sustainable yield (MSY) aside, our results imply that
an appropriate harvesting/thinning would be useful to increase
the (time-averaged) population size as a consequence of the oper-
ation, which could enhance the persistence or the sustainability of
the targeted population.

2. Model

We consider the following time-discrete single species popula-
tion dynamics:

Bt = A{OR(h) + (1~ O)R((1 — p)h)}(1 — p)hi, (1)

where h; is the population size at a fixed moment (i.e., a fixed obser-
vation point) of the tth year. The sufficiently smooth function
R(= 0) of the population size introduces the intraspecific density
effect on the reproductive rate, satisfying that 0 < R < 1. The posi-
tive parameter A means the intrinsic growth rate, and AR gives the
per capita reproductive rate affected by the intraspecific density
effect.

We harvest a portion p(0 < p < 1) of the population at a mo-
ment given by 0(0 < 0 < 1) in a specific season of each year (see
Fig. 1). As the exact definition, h, gives the population size at the
beginning of the specific season in the tth year. In our model (1),
we consider only the case of such a proportional harvesting/thin-
ning, (1 — p)h,, instead of a constant harvesting/thinning: h, — H
(H is an appropriate positive constant). This means that the as-
sumed harvesting/thinning is performed with a random operation,
for example, by a pesticide.

As in Matsuoka and Seno [21], we assume the specific season
during which the individual accumulates the energy for the repro-
duction. The total amount of the accumulated energy is reflected to
the reproductive success. Then we assume that the cumulative
density effect during the specific season determines the total
amount. As seen in (1), the cumulative density effect is assumed
to be additively given by the proportion 0 of the period before/after
the harvesting/thinning in the specific season. The case of 0 =0
may be regarded to correspond to the harvesting/thinning before
the specific season, and the case of # = 1 may be to the harvest-
ing/thinning after it.

In this paper, we assume that the density effect function R(h) is
sufficiently smooth, two times continuously differentiable, satisfy-
ing that R(0) = 1, lim;,_.R(h) = 0, and R'(h) = dR(h)/dh < O for any
h > 0.

With these assumptions, the per capita reproductive rate /R is
decreasing in terms of the population size, which introduces the
intraspecific density effect that can regulate the population
growth. When /4 > 1, from the assumptions, there is a unique posi-
tive value of h, say h, such that iR(h.) = 1. We can easily see that,
in the case of no harvesting/thinning (p = 0), the population ap-
proaches a stationary size given by h.: The equilibrium h = h. is
globally stable for any positive initial state ho.

In contrast, when 2 < 1, the population eventually goes extinct
independently of whether the harvesting/thinning is applied or
not. This is because the net reproductive rate given by h;,,/h; is
always less than 1, as easily seen from (1). When 4 = 1, in the same
reason, the population eventually goes extinct if a harvesting/thin-
ning is applied (p > 0). Also in the case of no harvesting/thinning
(p =0) when 2 =1, we can easily prove that the population size
is monotonically decreasing in generation, and that the extinction
necessarily occurs. Therefore, from the biological interest, we here-
after consider our model (1) with the assumption 4 > 1.

3. Analysis
3.1. Existence and stability of non-trivial equilibrium

In this section, we consider the existence of the non-trivial equi-
librium h=h" >0 when a harvesting/thinning is applied with
p > 0. The equilibrium population size h* satisfies the following
equation:

Z{OR(H) + (1 - O)R((1 — p)h")} :ﬁ. )
From the assumptions, 2 > 1 and the function R(h) is monotonically
decreasing toward zero in terms of h > 0, and so is the function
OR(h) + (1 — O)R((1 — p)h) of h. Since the left hand side of (2) is nec-
essarily less than / for h* > 0, the Eq. (2) has a unique positive root
only when A(1-p)>1, that is, only when p<1-1/a If
p = 1-1/),1itis clear that the Eq. (2) cannot have any positive root
for h", because the left hand side is less than 1/(1 — p) forany h > 0
in this case. In the case of p > 1 — 1/4, the population size is mono-
tonically decreasing in generation and necessarily goes extinct.
From these arguments, we now have the following result:

Result. The equilibrium h = h* > 0 uniquely exists if and only if
p<1-1/2

Making use of the standard local stability analysis for the equilib-
rium h = h™ > 0, we can get the following result:

Result. The equilibrium h = h* > 0 is asymptotically stable if

%[hz{()R(h) +(1=0R(1-ph}| >o0.

h=h*
It is unstable if the inequality is reversed.

We remark that, when no harvesting/thinning is applied (i.e.,
p = 0), we have h" = h.. Hence, from the above result, we find that,
in the case of p = 0, the equilibrium h = h, is asymptotically stable
if 2| R'(h¢) | he < 2, while it is unstable if this inequality is reversed.

3.2. Increase of the equilibrium population size by harvesting/thinning
In this section, we consider the p-dependence of the population

size h" at the non-trivial equilibrium. From the direct p-derivative
for (2), we have the following equation:

harvesting .
. harvesting .
reproduction ¢ reproduction
—> ih —> |l P —>
f f f f f f >
=0 =0T =T =0 =0T =T

specific season

specific season

Fig. 1. Scheme of the population dynamics with harvesting/thinning in our model (1). h; is the population density at the beginning of the tth specific season in which the

harvesting/thinning is applied.
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oh* 1 0
—=——2|0R(h)+ (1 -0)—{R((1 — p)h)h , 3
3y = = A | R+ (= 0GR - p)y | 3)
where A = 0R'(h") + (1 - 0)(1 — p)R((1 — p)h") < 0 because R < 0.
Therefore, we obtain the following result:

Result. To increase the harvesting/thinning rate causes the
increase of the equilibrium population size only if the following
condition is satisfied:

OR(h™) + (1 — ())dih{R(h)h} <0. (4)
h=(1-p)h*

This is the condition for the emergence of such a paradox that
the reduction of population by the harvesting/thinning conse-
quently causes its eventual increase. We can immediately obtain
the following important corollary from (4):

Result. The paradoxical increase occurs only if

% {R(h)h} < 0.
h=(1-p)h*

Therefore, in order of the paradox emergence, the function
R(h)h which gives what is sometimes called the reproduction curve
in population ecology or the return map in the dynamical system
theory necessarily has a range of monotonically decreasing. Fur-
ther, as a conventional theoretical assumption to consider the pop-
ulation dynamics, if the population is closed, that is, if any
immigration or emigration is negligible in terms of the population
size change, then R(h)h — 0 as h — 0. In such a case, the above nec-
essary condition for the paradox emergence indicates a humped
shape of the reproduction curve:

Result. The humped reproduction curve is necessary to cause the
paradox for the closed population dynamics.

Therefore, the population under a scramble competition [22] is
likely to cause the paradox, because the humped reproduction
curve due to the intraspecific density effect defines the scramble
competition (As for the concept of ‘scramble’ and the ‘contest’
competition, for example, see [23]).

From (4), as a sufficient condition for the paradox emergence,
we can find the following:

Result. If the function R satisfies that
%{R(h)h} >0 foranyh >0,

then the equilibrium population size h* is always monotonically
decreasing in term of p, so that the paradoxical increase never
occurs.

Therefore, it is implied that the paradoxical increase could occur
only in the case when the reproductive rate is sufficiently sensitive
to the intraspecific density effect and it steeply decreases as the
population size gets sufficiently large at least in a range of popula-
tion size. The population under a contest competition [22] never
causes the paradox, because the reproduction curve due to the con-
test competition is monotonically increasing (with an upper
bound) in terms of the population size.

In addition, from (4), we can find the following result, too:

Result. For sufficiently large 6(< 1), the paradoxical increase of the
population size never occurs and the harvesting/thinning makes
the equilibrium population size necessarily decrease.

This is because the condition (4) does not hold when 0 = 1.
From this result, the harvesting/thinning in the later period of
the specific season necessarily decreases the equilibrium popula-
tion size, compared to that without the harvesting/thinning:

Result. The paradox emergence requires a sufficiently small 0.

These arguments should be applied only for the case that the
non-trivial equilibrium exists stable, because our discussion is
about the harvesting/thinning effect on the population size at the
equilibrium. In the subsequent section, we consider some cases
of concrete function R, in which we will make more detail analysis
for each case, combining the condition for the stability condition
with that for the paradox emergence.

3.3. Application for some typical cases

3.3.1. Beverton-Holt type function: logistic growth case
Next, let us consider the following rational function R:

RO = 1 5)

where b is a positive constant. This case corresponds to what is fre-
quently called the Beverton-Holt model [24-26]. This model has a
monotonically increasing reproduction curve, which corresponds
to the contest competition [22]. Whenever the non-trivial equilib-
rium h = h" > 0 exists for (1 — p) > 1, it is globally stable such that
the population size asymptotically and monotonically approaches
h* from any positive initial value ho. This is the logistic growth with
the carrying capacity h".

In this case, we can easily find that the condition for the para-
dox emergence (4) is never satisfied for any h* > 0. The paradoxical
increase never occurs in this case: The harvesting/thinning eventu-
ally makes the equilibrium population size smaller than that be-
fore the harvesting/thinning is applied.

3.3.2. Exponential function: Ricker model case
In this section, we consider the exponential function R,

R(h) =€, (6)

where B is a positive constant. This gives what is called the Ricker
model or the Ricker-Moran model [27-30]. This model has a
humped reproduction curve corresponding to the scramble compe-
tition [22].

In the case of p =0, we can easily find that the paradoxical
increase can occur if 0 < 1/2 and e/~ < J < e?: For p =0, the
non-trivial equilibrium h = h” > 0 exists globally stable if and only
if 1 < 2 < e2. From our results about the general model, we can find
that, if and only if 7 > e!/(0-9 the paradoxical increase of h = h* > 0
occurs as p gets larger near p = 0. That is, if we apply a weak har-
vesting/thinning for the population at the equilibrium when the
harvesting/thinning has not been applied yet, the harvesting/thin-
ning with 0 < 1/2 and e'/1-9 < ) < e? results in the paradox
emergence.

In the similar way, we can easily find that, for 0 = 0, the para-
doxical increase occurs if and only if 1 —e?/1 < p <1 —e// while
the equilibrium exists globally stable for 1 -e?/Ai<p<1-1/A
In contrast, for 6 = 1, though the equilibrium exists globally stable
for 1 —e?/% < p <1—1/4 (the same condition as that in the case
of 0 = 0), the paradoxical increase never occurs (see Fig. 2).

As for the general case of p > 0 and 0 < 0 < 1, we can numeri-
cally investigate the time-averaged population size in the suffi-
ciently later generations as shown in Fig. 3. As in the case of the
piecewise linear R, when the paradoxical increase occurs at the
equilibrium, there is such a specific value of p that the harvest-
ing/thinning enlarges the equilibrium population size by the larg-
est amount.

However, differently from the case of the piecewise linear R,
even when the population size has a chaotic or periodic variation,
the time-averaged population size does not always tend to become
larger as the harvesting/thinning gets stronger (the larger p).
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Fig. 2. Bifurcation diagrams and the time-averaged values in terms of p for the Ricker model case with the exponential R given by (6). Numerically drawn. (a) 6 = 0.3; (b)
0 =0.6; (c) 0= 0.9. Commonly = 1.0 and /4 = 20.0. In each case, the upper is the bifurcation diagram and the lower the time-averaged value.

periodic or extinction

chaotic oscillation equilibrium
5 B A, l

Fig. 3. (p.0)-dependence of the time-averaged population size (h) in the sufficiently later generations for the Ricker model case with the exponential R given by (6).
Numerically drawn with g = 1.0 and 2 = 20.0. In the density plot, the lighter region indicates the larger time-averaged population size (h). Some isograms are numerically
drawn by thin curves, too. In the region between the solid and dotted curves, the paradoxical increase of the equilibrium population size in terms of p occurs.

Roughly speaking from the numerical calculations, under the con-
dition that the paradoxical increase occurs by the harvesting/thin-
ning applied in the earlier period of the specific season (the smaller
0), the relatively weak harvesting/thinning could not reduce the
time-averaged size but eventually increase it, so that a sufficiently
strong harvesting/thinning is required in order to reduce the pop-
ulation size to the level less than that before the harvesting/thin-
ning is applied.

Under the condition that the paradoxical increase does not oc-
cur by the harvesting/thinning applied in the later period of the
specific season (the larger 0), the harvesting/thinning could reduce
the (time-averaged) population size as the result.

3.3.3. Power function
In this section, we consider the following power function R:
R(h)y=h"", (7)

where y is a positive constant different from 1. Since the right hand
side of (1) is a constant independent of h, if y = 1 in (7), we exclude

this singular case. This is the density effect studied by [31] (also see
[32]). Although this density effect function R does not satisfy the
assumption R(0) =1 for our arguments in this paper, our results
are applicable as long as the equilibrium is considered. This is be-
cause the assumption R(0) = 1 is relevant only to the existence of
equilibrium h = h", and further, in this case, the following unique
non-trivial equilibrium h = h* > 0 always exists:

h = [2{0(1 = p) + (1 = 0)(1 = p)" 7"}]"/".

This equilibrium is asymptotically and globally stable for y < 2, and
unstable for y > 2. When it is unstable, the population size shows
an exciting oscillation and positively diverges. Since the stability
is determined only by the parameter y and independent of the har-
vesting/thinning, this could be regarded as one of specific cases
about the density effect function for our model framework.

From (4) and the expression of the non-trivial equilibrium h* gi-
ven above, we can find that the paradoxical increase never occurs if
7 < 1. In contrast, if y > 1 (and y < 2 for the stable existence of
h=h" > 0), then
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o
{aso for p < p,
¥>0 forp>p,

Further from this result, we can easily find that the paradoxical in-
crease always occurs if y > 1/(1-0) and 6 < 1/2 whenever the
non-trivial equilibrium exists asymptotically stable. When
1 <7y<1/(1-0), the paradoxical increase occurs if and only if
p > p. (see Fig. 4). With the same arguments, we can find that,

(only in the case of 0 = 0 of our model (1)), in which the harvest-
ing/thinning was introduced by a constant subtraction of popula-
tion: h, —H (H is an appropriate positive constant) instead of
(1 — p)h; in our model (1). However, no discussion about our pres-
ent subject of the paradox emergence has been done.

From (2) with (8), we can explicitly obtain the non-trivial equi-
librium population size:

o 1100 =p)

T0rd-01-p) @)

This equilibrium exists if and only if

for given p and y > 1, the paradox emerges if 0 < 6. where 1<i(1-p)< ﬁ
—U)p
y-1
c = 7’/ A+d-p) The condition for the asymptotical stability is given by

Otherwise, it does not emerge (Fig. 4).

We can conclude that, in this case, the stronger density effect
(the larger y) and the earlier harvesting/thinning (the smaller 6)
make the paradoxical increase more likely to occur, whenever
the non-trivial equilibrium exists asymptotically stable.

3.3.4. Piecewise linear function: logistic map case
At first, let us consider the following piecewise linear function

W(1=p) <3,

while the condition for the paradox emergence is now obtained as
0

(1-0(1-p)

From these conditions, we find that the paradoxical increase occurs
at the equilibrium state if and only if the following condition is
satisfied:

M(1=—p)>2+

R:
0 ) . 1
R(h){l—% for 0.< h < he; . iy <0 < min {3 1o
0 for h > he, From this condition, we remark that the paradox emerges only if

where h, is a positive constant beyond which every individual can-
not succeed in its reproduction. This case corresponds the scramble
competition [22]. This function does not satisfy all our assumptions
for the function R because it is not differentiable at h = h,. Now we
focus the value of h only in the range [0, h.) where every assumption
is satisfied, because any positive h* is necessarily in [0, h.). As long
as considered (8) only in [0, h.), the population dynamics (1) with
(8) satisfies all our assumptions.

The population dynamics (1) with (8) essentially corresponds to
what is now called a logistic map, which is one of the most famous
discrete population dynamics models. It has been providing a vari-
ety of discussions about its applicability for the real population
dynamics, because it has a nature of period-doubling bifurcation
toward chaos [27,33-35] (see Fig. 5).

Cooke and Nusse [36] and Cook et al. [37] mathematically con-
sidered the qualitative nature of the dynamics described by the
similar discrete model concerning the harvesting/thinning effect

. (1 1-20
p<m1n{§7ﬁ}. (11)

Simultaneously we have the other necessary condition that 6 < 1/2.

It is clear that the paradoxical increase never occurs for 0 suffi-
ciently near 1. In the case of 0=0, it occurs when
2 < A(1-p)<min{3,1/p}and p < 1/2.In Fig. 5, we show numer-
ical examples of the paradoxical increase of population size by har-
vesting/thinning. It is interesting that the time-averaged
population size through a sufficiently large number of generations
is increased by harvesting/thinning even when the population size
has a periodic or chaotic variation as its limiting behaviour.

These results are illustrated by Fig. 6 numerically drawn with
he = 1.0 and 1 = 4.0. We find that, when the paradoxical increase
occurs at the equilibrium, there is such a specific value of p that
the harvesting/thinning enlarges the equilibrium population size
by the largest amount.

NO PARADGX 0= NO PARADOX
0°|  NO PARADOX PARADIOIE, g o
TN
0= 029
PARADOX
PARADOX
T p

Fig. 4. (7,0)- and (p, 0)-dependence of the paradox emergence for the model with the power function R given by (7). Numerically drawn, respectively, with p = 0.4 and

v = 1.3. See the text for details.
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Fig. 5. Bifurcation diagrams and the time-averaged values in terms of p for the logistic map case with the piecewise linear R given by (8). Numerically drawn. (a) 6 = 0.0; (b)
0=02;(c)0=04;(d)0=0.6;(e)0=0.8; (f)0 = 1.0. Commonly h. = 1.0and /1 = 4.0. In each case, the upper is the bifurcation diagram and the lower the time-averaged value.

Moreover, roughly speaking from the numerical calculations, as
long as the population size has a chaotic or periodic variation, the
time-averaged population size tends to become larger as the har-
vesting/thinning gets stronger (the larger p) (see Figs. 5 and 6).
Therefore, if the population size has a chaotic or periodic variation,
the relatively weak harvesting/thinning could not reduce the time-
averaged size but eventually increase it.

Consequently, a sufficiently strong harvesting/thinning is re-
quired in order to reduce the population size to the level lower
than that before the harvesting/thinning is applied. Otherwise,
the population size could paradoxically increase by the harvest-
ing/thinning.

4. Conclusion

As shown in our analysis for some concrete models, according
to the system in which the paradox could emerge, we have a crit-
ical harvesting/thinning ratio p that enlarges the equilibrium pop-
ulation size by the largest amount. With the harvesting/thinning
with p greater than it, the equilibrium population size could be
lowered, and with p greater than another greater critical value,
the population goes extinct as intuitively expected. This result

demonstrates such a possibility of the harvesting/thinning opera-
tion that it could contribute to enhance the population persistence
if designed well in its strength and timing.

In our model, the paradox is more likely to emerge by the harvest-
ing/thinning in the earlier period of the specific season during which
the reproductive success in the adulthood is significantly deter-
mined because of the importance of the net energy gain for the mat-
uration of fecundity. This means that the earlier reduction of the
population density could work to sufficiently moderate the density
effect on the competition for the energy gain, and subsequently to
increase the per capita net energy gain at the end of the specific sea-
son. The increased per capita net energy gain is reflected to the over-
compensated total reproduction in the population which eventually
leads to the overcompensated population size in the next genera-
tion. On the other hand, the harvesting/thinning in the later period
of the specific season never causes the paradox. Too later harvest-
ing/thinning could work to moderate the density effect little and
could be reflected to a weak enhancement in the total reproduction,
so that the population reduction by harvesting/thinning the adult
population leads to the smaller population size in the next genera-
tion. Therefore, the harvesting/thinning aimed to the targeted pop-
ulation has to be planned for the earlier stage of life history (e.g., egg
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Fig. 6. (p,0)-dependence of the time-averaged population size (h) in the sufficiently later generations for the logistic map case with the piecewise linear R given by (8).
Numerically drawn with h, = 1.0 and 4 = 4.0. In the density plot, the lighter region indicates the larger time-averaged population size (h). Some isograms are numerically
drawn by thin curves, too. In the region under the dotted curve, the paradoxical increase of the equilibrium population size in terms of p occurs.

or seed), while that aimed to depress the targeted population has to
be done for the later stage (e.g., juvenile, pupa, or adult).

Moreover, in order of the paradox emergence, the density
dependence has to be sufficiently sensitive to the increase in the
population density. As implied by the result for the model with
the power density effect function (7), the sensitivity would be re-
quired to be stronger than the inverse of population density
(y > 1 for (7)). As a consequence, the scramble competition would
be likely to cause the paradoxical increase in the equilibrium (or
the time-averaged) population size by a harvesting/thinning.

Consequently, only for the targeted species which has a suffi-
ciently sensitive density dependence, the paradox could be caused
by the harvesting/thinning operated in the earlier stage of life his-
tory and with an appropriately intermediate strength. Our result
suggests that a large family of density effect functions, that is, a
large family of reproduction curves could cause the paradoxical in-
crease in the equilibrium (or the time-averaged) population size by
a harvesting/thinning.
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